CMB Lensing with POLARBEAR

Michael Myers UC Berkeley

POLARBEAR Collaboration

University of California at Berkeley

P.I.

Kam Arnold Daniel Flanigan Wlliam Holzapfel Jacob Howard **Zigmund Kermish** Adrian Lee Marius Lungu Mike Myers *Haruki Nishino Roger O'Brient Erin Ouealy Christian Reichardt Paul Richards Chase Shimmin **Brvan Steinbach** Aritoki Suzuki Oliver Zahn

Lawrence Berkeley National Lab

Julian Borrill Christopher Cantalupo Theodore Kisner Eric Linder Mike Sholl Helmuth Spieler **University of Colorado at Boulder**

Aubra Anthony Nils Halverson

University of California at San Diego

David Boettger Brian Keating George Fuller Nathan Miller Hans Paar Ian Schanning Meir Shimon Nathan Stebor Imperial College Andrew Jaffe Daniel O'Dea Laboratoire Astroparticule & Cosmologie Josquin Errard Giulio Fabbian Radek Stompor KEK Yuii Chinone Masava Hasegawa Masashi Hazumi Tomo Matsumura Hideki Morii Akie Shimizu Takayuki Tomaru **McGill University** Peter Hyland Matt Dobbs

Cardiff University

Peter Ade Will Grainger Carole Tucker

Outline

Overview Science goals Experiment design 2010 Engineering run Current status (Deployment soon!) Future plans **POLARBEAR-II POLARBEAR-Extended**

POLARBEAR Science Goals

Measure E-mode polarization to high precision Deep search for g-wave B-modes

• r = 0.025 for PB-I (2σ)

Detect and characterize B-mode lensing signal

- Neutrino masses
- Cross-correlation science
- Early dark energy

This requires:

Sensitivity

Large-format TES bolometer arrays

High quality mm-wave site (Atacama Desert, Chile)

Systematic error control

Pol. Modulation (HWP, sky rotation)

4' beam @ 150 GHz

Low sidelobe optical design

POLARBEAR-I Expected Polarization Power Spectra

Atacama Desert, Chile

- Excellent mm-wave site (high altitude, dry)
- Will be sited close to the ACT telescope

Telescope design

POLARBEAR-I Receiver

POLARBEAR: Antenna-coupled Arrays

Filter Antenna

1274 bolos @ 150 GHz (PB-I) Monolithic wafer Scalable

6mm Lenslet

POLARBEAR: Antenna-coupled Arrays

POLARBEAR-I Engineering Run 2010 Cedar Flat, CA

Huan Tran Telescope at the James Ax Observatory

225

First Light: April 2010

PB-I Focal Plane Sensitivity

- Engineering run noise limited by Cedar Flat sky temperature
- Typical measured optical efficiency ~50% (implies 75% at focal plane)
- Projected NET_{PIXEL} = 340 $\mu K \sqrt{s}$ in Chile

Atmospheric noise in Temperature is suppressed in polarization

Beam Properties

* Requirements are relaxed when HWP, sky rotation included

Measured POLARBEAR beams meet the systematic error requirements

POLARBEAR Measurements of TauA

Tau A I, Q, U

Taken at several Half Wave Plate positions

POLARBEAR-I status

Receiver in Berkeley for upgrade to full readout/focal plane

Telescope in Chile, foundation under construction

Analysis team working hard on Cedar Flat data (calibration, pointing, etc.), preparing pipeline for Chile data set

Chile deployment mid-2011!

POLARBEAR - II

POLARBEAR-II

Receiver upgrade for the existing telescope

- 36 cm diam. focal plane (22 cm for PB-I)
- Two-color pixels (90 GHz, 150 GHz)
- 6076 bolometers (4.8x PB-I)
- 100 mK operation

Scheduled to deploy in late 2013 on HTT

POLARBEAR-II focal plane

Above: Full PB-II focal plane Top Right: Detector test chip Right: Measured spectral response For 90 GHz/ 150 GHz bands

PB-II Receiver (KEK)

- Receiver under construction
- Backend machined (right), contains cryogenics, focal plane
- Optics tube waiting for final optical design (soon)

POLARBEAR - Extended

POLARBEAR-Extended

- Investigating 3-6 telescopes at PB site in Chile
- Each telescope uses a PB-II type receiver (90/150 GHz or 150/220 GHz)
- Will produce high-quality lensing maps over a large fraction of the sky
- Overlap with optical surveys for cross-correlation science (BOSS, Herschel, etc)

Telescopes 2,3 fully funded by the James Ax Foundation

Sensitivity Comparison

	# bolos	Deep (3y)	Wide (3y)
PB-I	1274	1000 sq deg @ 8 μK arcmin	-
PB-II	6076	1000 sq deg @ 3 μK arcmin	4000 sq deg @ 6 μK arcmin
(PB–II) x 3	18228	1000 sq deg @ 1.7 μK arcmin	16000 sq deg @ 7 μK arcmin
(PB–II) x 6	36456	1000 sq deg @ 1.2 μK arcmin	16000 sq deg @ 5 μK arcmin

See Oliver Zahn's talk for lensing science applications of PB-extended

Conclusion

- POLARBEAR-I deploys mid-2011
 - Successful engineering run, meets requirements!
 - Should reach r ~ 0.025, detect B-mode lensing
- POLARBEAR-II on schedule for 2013 deployment
- POLARBEAR "Extended" will follow

- Expand to 3 – 6 telescopes

End.

Systematic Power Spectra Compared to CMB Science Targets

