CMB Lensing reconstruction with the South Pole Telescope

A. van Engelen, G. Holder, SPT collaboration

SPT

- 10 m dish 1' FWHM beam
- Observes at 3 frequencies: 90, 150, 220 GHz
- ~1000 detectors

SPT survey

- Survey Depth is 18 uK-arcmin
- 2500 sq deg by ~end of 2011; ~1400 right now; we use ~500 sq deg from 2008 and 2009 surveys

These properties make it ideal for studying lensing!

 $\delta\theta_{rms} \sim 2.4$ '

Sample-variance dominated well into the damping tail

Map for primary CMB science (1 of 4)

- Led by Ryan Keisler see his talk (following this one)
- Filtered for 500 < I < 3000

- ~500 sq deg at 18 uK'
- 150 GHz only

Lensing

CMB2

СМВІ

X

 $\bullet \ \ \text{Non-gaussian mode coupling for} \qquad l_1 \neq -l_2:$

$$\langle T^{L}(\mathbf{l}_{1})T^{L}(\mathbf{l}_{2})\rangle = \mathbf{L} \cdot (\mathbf{l}_{1}C^{T}_{l_{1}} + \mathbf{l}_{2}C^{T}_{l_{2}})\phi(\mathbf{L}) + O(\phi^{2})$$
$$\mathbf{L} = \mathbf{l}_{1} + \mathbf{l}_{2}$$

- We extract φ by taking an average over CMB multipoles separated by a distance L
- We use the standard Hu quadratic estimator.

Quadratic Estimator (Hu 2002)

- We adopt the standard Optimal Quadratic Estimator
 - Make a filtered gradient map (filtered)
 - Make a high-pass filtered map
 - Multiply them in real space
 - Take the divergence
 - Renormalize to ensure $\langle \Phi^{est}(L) \rangle_{CMB} = \Phi(L)$, to first order in Φ
- Power in this map probes CMB trispectrum; $\phi^{est} \sim T^2$; $|\phi^{est}|^2 \sim T^4$
- Filters are tuned to maximize S/N; downweight noisy modes

SPT noise power

- Due to SPT azimuthal scan strategy, noise is lowest in Ix-direction in Fourier space
- We cut at |200 < | < 4000, as well as a vertical strip with $|I_x| < 1000$
- This makes the recovered lensing field anisotropic

Mitigating the noise bias

- Noise bias comes from gaussian power (unconnected four-point function) in map
 - Das et al (2011) run simulations with measured map amplitude (and random phases) through pipeline
- The power found in SPT maps agrees well with that in our simulations (up to a measurable, constant factor); we can subtract
 - SPT calibration uncertainty (5% in power) still feeds into lensing signal from off-diagonal couplint

Another way to mitigate the noise bias

- Can use disjoint pieces of temperature Fourier space (from same field), constructing two Φ maps; then compute cross-power
- Result will not contain bias from Gaussian signal (Hu 2001, Sherwin & Das 2010)

Apodization effects

- Apodization leads to mode coupling
- We run estimator initially neglecting this, then deal with effects
- Additive large-scale signature. Peaks at low L; factor of 5 brighter than the deflection signal

• Monte Carlo it & subtract

Apodization effects

- The window signature depends on the total power in the map:
- Appears at very low L
- A misestimate gives $\sim 0.5\sigma$ scatter at L = 150; negligible for L > 300
- We choose to throw out data at L <150

statistical errors)...

is applied

• Cut at 65 mJy

CMB + 18 uK' whitenoise + Poisson field CMB + 18 uK' whitenoise + Gaussian field with same power

• Cut at 41 mJy

CMB + 18 uK' whitenoise + Poisson field CMB + 18 uK' whitenoise + Gaussian field with same power

• Cut at 26 mJy

CMB + 18 uK' whitenoise + Poisson field CMB + 18 uK' whitenoise + Gaussian field with same power

• Cut at 16 mJy

CMB + 18 uK' whitenoise + Poisson field CMB + 18 uK' whitenoise + Gaussian field with same power

tSZ • Clusters pop out in reconstruction: -1.13 0200402 SZ map Deflection (Sehgal et al 2009) 47.8 0.000288 Unmodified -94.4 -0.00182 -141. -0.00391 1.5 -0.00600 -234. -0.00809

tSZ

- tSZ power in sims is ~double the measured value
- Knock down power in Sehgal sims
- SZ bias vs. masking level:

Results: mapping structure at z ~ 2

Power spectrum: Higher-order noise biases

- At high L (> 200): positive noise bias due to extra terms in trispectrum NL
 (1) (Kesden et al 2003)
 - $\propto C_L^{\varphi\varphi}$
- At low L: negative bias due to terms of order φ², neglected in estimator formalism (Hanson et al 2010)
- We treat both of these as simple transfer functions on $C_L^{\varphi\varphi}$

Lensing power spectra

- Obtain gaussian bias from simulations which closely match the SPT observations;
- Obtain lensing transfer functions from diff. between observations of lensed and unlensed CMB

Curl null test (Cooray et al 2005)

 In reconstruction, replace divergence of gradient with "curl" of gradient

$$\partial_x g_x + \partial_y g_y \to \partial_y g_x - \partial_x g_y$$

 No signal detected (after subtracting noise bias similar to gradient case)

Summary & Outlook

- Detection of lensing power spectrum from SPT is forthcoming, at very high significance based on ~500 sq deg
 - Foregrounds not a huge problem
- Full SPT temperature survey will be 2500 sq deg at 18 uK' depth plus maps at 90 and 220 GHz
- SPTpol upcoming

SPT-pol lensing

 polarization upgrade coming to SPT at end of 2011 or so

CMB Power spectrum science

 Detection of secondary anisotropy and measurement of low tSZ power (Lueker et al 2010);

Detection of clustered dusty sources (Hall et al 2010); tighter constraints with more sky(Shirokoff et al 2010)

- Next result will be power spectra covering primary CMB 500 < L < 3000
 - See Ryan Keisler's talk, next
- We use these fields for the lensing analysis

