Dusty Galaxies

Berkeley CMB Lensing Workshop - April 2011

UV from young, hot stars

Extragalactic Background Light (EBL)

Negative K-correction

get this data @ http://www.ias.u-psud.fr/irgalaxies/model.php#Counts

Redshift Distribution

Total Infrared Background

Béthermin et al. (2011) arXiv:1010.1150

Star Formation History

What are they?

What are they?

BIG QUESTIONS

How many are there?
 Where are they?

Observing in the submillimeter

Submm Observations

U-band ~ 60 sources/ arcmin² K-band ~ 45 sources/ arcmin² SPIRE ~ 0.5 sources/ arcmin²

 $S > 20 \text{ mJy} : 1,200/deg^2$ $S < 20 \text{ mJy} : 480,000/deg^2$

50 brightest (top 0.5%)

70% of top 0.5% recovered

50 brightest recovered

1. How many are there?

How do you count sources without sources to count?

Measured Number Counts

Lensed Sources

Strong Detections: PdBI: $CO(J=5\rightarrow 4)$ CARMA: $CO(J=3\rightarrow 2)$ GBT: $CO(J=1\rightarrow 0)$

Lensed Sources

Riechers et al. (2011) arXiv: 1104.4116 3. Where are they? How do you measure clustering when most of what you see are fluctuations?

$P_{shot}=S^2dN/dS$

Poisson (shot) Noise

Star Forming Galaxies are biased tracers of Dark Matter

BLAST Power Spectrum

Planck Collaboration et al. (2011)

arXiv: 1101.2028

Planck Power Law

Frequency-dependence of Power-law

see e.g., Cooray & Sheth (2000), Zehavi et al. (2005, 2008)

- Clustering Signal made up of two regimes
 - 2-halo: Linear Regime (large scales)
 - 1-halo: Non-Linear Regime

(small scales)

BLAST Halo Model

What are you actually fitting?

$$P_{1h}(k, z) = \int_{\mathcal{M}} n_{halo}(M, z) [2N_{cen}(M)N_{sat}(M)u_{DM}(k, z|M) + N_{sat}^2(M)u_{DM}^2(k, z|M)] dM / n_{gal}^2(z),$$

$$P_{2h}(k, z) = P_{DM}(k, z) \left[\int_{\mathcal{M}} n_{halo}(M, z)N_{gal}(M, z) \times b(M, z)u_{DM}(k, z|M) dM \right]^2 / n_{gal}^2(z).$$

$$n_{gal}(z) = \int_{\mathcal{M}} n_{halo}(M, z) \left[1 + \left(\frac{M}{M_1}\right)^{\alpha} \right] dM$$

and for each M_{min} - α pair, M_1 fixed to agree to source model by requiring:

$$\int_0^\infty \frac{dN}{dS\,dz}(S,z)\,dS = n_{\rm gal}(z)\,dV_{\rm c}(z)$$

$M_{\rm min} \approx 3 \times 10^{11} \, M_{\rm sun}$ $\alpha \approx 1.1$

Viero et al. (2009)

BLAST Halo Model

Planck Collaboration et al. (2011) arXiv: 1101.2028

Planck Halo Model

arXiv: 1101.1080

Herschel Halo Model

CMB Galaxies SZ Clusters

The high-*l* CMB sky

Dunkley et al. 1009.0866

Cross-Correlations Isolate Dusty Galaxies from the Rest

Cross-Correlate BLAST and ACT

Hajian & Viero et al. arXiv:1101.1517

Model: Marsden et al. 1010.1176 Model: Béthermin et al. 1010.1150

future surveys

image: Joaquin Vieira

SPT 100 deg² deep field is the deepest mm map in existence and will remain so for the next decade.

Given 79 hours to map a 100 deg² with SPIRE

Will use this field for cross-correlations in hopes of measuring the kSZ power spectrum

SPT X SPIRE

