Beam Systematics, Lensing, and Current & Future Experiments

Nathan Miller, Meir Shimon, Brian Keating University of California – San Diego

Overview

- Imperfect beams lead to spurious power spectra
 - TT, EE, BB, TE, TB, EB
- How does this affect reconstruction of the lensing power spectra?
 - It will affect the extraction of lensing parameters from data
 - How does the scan strategy affect reconstruction?
- How does this affect the different estimators for current/future experiments?
- References:
 - Shimon, Keating, Ponthieu, & Hivon PRD 77 083003
 - Miller, Shimon, & Keating PRD 79 063008
 - Miller, Shimon, & Keating PRD 79 103002

Lensing Reconstruction

Systematic Beam Effects in Real Space

differential pointing (dipole effect)

differential FWHM (monopole effect)

differential ellipticity (quadrupole effect)

Irreducible

differential gain (monopole effect)

Systematic Beam Effects in Real Space

differential pointing (dipole effect)

differential FWHM (monopole effect)

differential gain (monopole effect)

differential ellipticity (quadrupole effect)

Irreducible

Now we will investigate how these systematic effects will affect the EB estimator

Reducible Beam Systematic Differential Pointing

Reducible: Optimizing scan strategy will reduce systematic

Reducible Beam Systematic: Differential Pointing

Reducible: Optimizing scan strategy will reduce systematic

B-mode Polarization Differential Pointing

Irreducible Beam Systematic Differential Ellipticity

Irreducible: Optimizing scan strategy will NOT reduce systematic

Irreducible Beam Systematic Differential Ellipticity

Irreducible: Optimizing scan strategy will NOT reduce systematic

B-mode Polarization Differential Ellipticity

Imperfect Beams: Ellipticity

$$e = \frac{\sigma_x - \sigma_y}{\sigma_x + \sigma_y}$$

Imperfect Beams: A Theorist Builds a Bolometer

Imperfect Beams: A Theorist Builds a Bolometer

Scan Strategy Functions

Nearly ideal scanning

$$f_{1} = \frac{1}{2} |\langle \exp(2i\alpha) \rangle|^{2} \quad \text{"Quadrupole"}$$

$$f_{2} = \frac{1}{2} \left(|\langle \exp(i\alpha) \rangle|^{2} + |\langle \exp(3i\alpha) \rangle|^{2} \right) \text{"Dipole"/"Octupole"}$$

 α : attack angle – angle between polarization sensitive direction of bolometer and a constant vector on the sky

Systematic Parameters

effect	parameter	definition		
gain	g	$g_1 - g_2$		
monopole	μ	$\frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2}$		
dipole	ρ	$\rho_1 - \rho_2$		
quadrupole	e	$\frac{\sigma_x - \sigma_y}{\sigma_x + \sigma_y}$		
rotation	ε	$\frac{1}{2}(\varepsilon_1 + \varepsilon_2)$		

Lensing Reconstruction

For the polarization data, EB estimator has the lowest noise

Systematic Power Spectra: E/B

effect	parameter	ΔC_l^E	ΔC_l^B	
$_{\mathrm{gain}}$	g	$g^2 f_1 \star C_l^T$	$g^2 f_1 \star C_l^T$	
$\mathbf{monopole}$	μ	$4\mu^2 (l\sigma)^4 f_1 \star C_l^T$	$4\mu^2 (l\sigma)^4 f_1 \star C_l^T$	
pointing	ρ	$c_{\theta}^2 C_l^T J_2^2(l\rho)$	$s_{\theta}^2 C_l^T J_2^2(l\rho)$	
		$+J_1^2(l\rho)C_l^T\star f_2$	$-J_1^2(l\rho)C_l^T \star f_2$	
quadrupole	е	$I_1^2(z)c_\psi^2 C_l^T$	$I_1^2(z)s_\psi^2 C_l^T$	
rotation	ε	$4\varepsilon^2 C_l^B$	$4\varepsilon^2 C_l^E$	

$$z = \ell^2 \sigma^2 e$$

For ellipticity: $c_{\psi} = cos(2\psi)$ $s_{\psi} = sin(2\psi)$

I(z) = modified Bessel function

Systematic Power Spectra: EB

effect	parameter	ΔC_l^{EB}
gain	g	0
monopole	μ	0
pointing	ρ	$s_{\theta}c_{\theta}J_2^2(l\rho)C_l^T$
quadrupole	е	$I_1^2(z) s_\psi c_\psi C_l^T$
rotation	ε	$2\varepsilon C_l^E$

$$z = \ell^2 \sigma^2 e$$

For ellipticity: $c_{\psi} = cos(2\psi)$ $s_{\psi} = sin(2\psi)$ I(z) = modified Bessel function

Effect of Scan Strategy on Systematics

- Differential gain and beamwidth couple to the "quadrupole" of the scan strategy
- Differential pointing couples to the "dipole" and "octupole" of the scan strategy
- If we remove the "dipole", "quadrupole", and "octupole" from the scan strategy, then we remove the effects of differential gain, beamwidth, and pointing
- Differential ellipticity and rotation are irreducible, therefore the scan strategy has no effect on systematics
- If we are given a scan strategy, we can construct the f functions

Experiments

	f_{sky}	ν (GHz)	θ_b	$\Delta_T(\mu K)$	$\Delta_E(\mu K)$
Current Reference Experiment	0.03	90	6.7'	1.13	1.6
		150	4'	1.70	2.4
		220	2.7'	8.0	11.3
CMBPol	0.65	150	5'	0.22	0.32

Lensing Reconstruction Current Experiment

Noise on estimators

Lensing Reconstruction

Noise on estimators

Lensing Reconstruction With Systematics Current Experiment

e = 0.0, 0.01, 0.02, 0.05, 0.10, 0.20

Lensing Reconstruction: Rotation

Rotation

Lensing Reconstruction: Pointing

Lensing Reconstruction With Systematics CMBPol

e = 0.0, 0.01, 0.02, 0.05, 0.10, 0.20

Lensing Reconstruction: Pointing

Rotation

Lensing Reconstruction: Pointing

...,

Conclusions

- Beam systematics will lead to spurious polarization and power spectra.
- This will affect the reconstruction of the lensing potential.
- Future experiments will be very susceptible to the effect of beam systematics.
- We need to put a lot of work into limiting beam systematics for future experiments.
- For non-polar sites, we can get very good coverage with just sky rotation.