Reconstruction of Gravitational Lensing

Chang Feng(冯畅), Brian Keating, Hans Paar, Meir Shimon University of California, San Diego

Outline

Introduction

Flat \& Full sky reconstructions (Hu \& Okamoto)
Flat sky reconstruction (Novel Method)
Plan for the future

Introduction

- Lensing introduces non-Gaussianity
- Non-Gaussianity permits Delensing
- Delensing largely removes non-Gaussianity and thus reduces
- bias in Cosmological parameters
- Delensing needed to identify primordial B mode

Two methods

Truncated Taylor series expansion (Hirata, Hu and Okamoto)
Maximization of Likelihood (tryout)

Flat sky reconstruction

Hu \& Okamoto. Astrophys. J. 574:566-574, 2002

$$
\begin{aligned}
& X(\mathbf{n})=\tilde{X}(\mathbf{n}+\mathbf{d})=\tilde{X}(\mathbf{n})+\mathbf{d} \cdot \nabla \tilde{X}(\mathbf{n})+O\left(d^{2}\right) \\
& \delta B(\mathbf{l})=\int \frac{d^{2} l^{\prime}}{(2 \pi)^{2}}\left[\tilde{B}\left(\mathbf{l}^{\prime}\right) \cos 2 \phi_{\mathbf{l}^{\prime} \mathbf{l}}+\tilde{E}(\mathbf{l}) \sin 2 \phi_{\mathbf{l}^{\prime}} \mathbf{l}\right] W\left(\mathbf{l}^{\prime}, \mathbf{K}\right) \\
& W(\mathbf{l}, \mathbf{K})=-\mathbf{l} \cdot \mathbf{K} \phi(\mathbf{K}) \quad \mathbf{K}=\mathbf{l}-\mathbf{l} \mathbf{\prime}
\end{aligned}
$$

$$
<X(\mathbf{l}) X^{\prime}\left(\mathbf{l}^{\prime}\right)>=(2 \pi)^{2} \tilde{C}_{l}^{X X^{\prime}} \delta(\mathbf{L})+f_{\alpha}\left(\mathbf{l}, \mathbf{l}^{\prime}\right) \phi(\mathbf{L})
$$

$$
\mathrm{L}=\mathrm{I}+\mathrm{I}^{\prime} \quad \alpha=\mathrm{TT}, \mathrm{TE}, \mathrm{~TB}, \ldots
$$

$$
f_{\alpha} \text { is known }
$$

Off-diagonal elements and non-Gaussianity

Hu \& Okamoto's estimator for deflection angle field

$d(\mathbf{L})=\frac{A(L)}{L} \int \frac{d^{2} l}{(2 \pi)^{2}} x(\mathbf{l}) x^{\prime}\left(\mathbf{1}^{\prime}\right) F\left(\mathbf{1}, \mathbf{1}^{\prime}\right) \quad \mathrm{X}=\mathbf{T}, \mathbf{E}, \mathbf{B}$		
$\mathrm{d}=\nabla \phi$		
	\downarrow	
1.	$<d(\mathbf{L})>=L \phi(\mathbf{L})$	2-point correlation <xx>
	constrain $A(L) \longrightarrow$ noise	
2.	$\left\langle d^{2}(\mathbf{L})\right\rangle=L^{2} \phi^{2}(\mathbf{L})+N(L)$	4-point correlation <xxxx>
	Minimize: $\quad N(L)$	
constrain $F\left(\mathbf{1}, \mathrm{l}^{\prime}\right) \longrightarrow$ Filter		
	l') contains unlensed (!) and lensed pow	wer spectrum

Noise power spectrum for the reference experiment

Convergence for $L_{\max }=3000$
$\Delta_{T}=1 \mu \mathrm{~K} \cdot \operatorname{arcmin}, \Delta_{P}=\sqrt{2} \mu \mathrm{~K} \cdot \operatorname{arcmin}, \sigma=4^{\prime}$

Hu \& Okamoto's EB estimator

$$
d_{E B}(\mathbf{L})=\frac{A(L)}{L} \int \frac{d^{2} l}{(2 \pi)^{2}} E(\mathbf{l}) B\left(\mathbf{l}^{\prime}\right) \frac{\tilde{C}_{l}^{E E} \mathbf{L} \cdot \mathbf{l}}{C_{l}^{E E} C_{l^{\prime}}^{B B}} \sin 2 \phi_{\mathbf{l}_{1} \mathbf{l}_{2}}
$$

$$
\text { CPU Time } \propto N^{2} \quad \text { Very slow }
$$

Define tensor maps (H \& O):

$$
\begin{aligned}
& M_{i k j}^{(1)}=\int \frac{d^{2} l}{(2 \pi)^{2}} e^{i \mathbf{l} \cdot \mathbf{n}} l \hat{l}_{i} \hat{l}_{k} \hat{l}_{j} E(\mathbf{l}) \frac{\tilde{C}_{l}^{E E}}{C_{l}^{E E}} \\
& M_{k m}^{(2)}=\int \frac{d^{2} l^{\prime}}{(2 \pi)^{2}} e^{i \mathbf{l}^{\prime} \cdot \mathbf{n}} B\left(\mathbf{l}^{\prime}\right) \frac{1}{C_{l^{\prime}}^{B B}} \hat{l}_{k}^{\prime} \hat{l}_{m}^{\prime}
\end{aligned}
$$

$$
d_{E B}(\mathbf{L})=\frac{A(L)}{L} L_{i} \mathcal{F}^{-1}\left[(-2) \sum_{j k m} M_{i j k}^{(1)}(\mathbf{n}) M_{k m}^{(2)}(\mathbf{n}) \epsilon_{k m 3}\right]
$$

Primordial and Lensed CMB

Averaged reconstructed power spectrum $\mathrm{C}_{\mathrm{l}}{ }^{\text {dd }}$

Outline

Introduction
Flat \& Full sky reconstructions (Hu \& Okamoto)
Flat sky reconstruction (Novel Method)
Plan for the future

Signal and Noise in Full Sky

For the polarization data, EB estimator has the lowest noise

Input d(n)

+4. 144E-03

Reconstructed

Reconstructed d(n)

Reconstructed power spectrum

Healpix Pixelization, Nside = 512, Lmax $=1024$
$\Delta_{T}=1 \mu \mathrm{~K} \cdot \operatorname{arcmin}, \Delta_{P}=\sqrt{2} \mu \mathrm{~K} \cdot \operatorname{arcmin}, \sigma=4^{\prime}$

Outline

Introduction

Flat \& Full sky reconstructions (Hu \& Okamoto)
Flat sky reconstruction (Novel Method)
Plan for the future

Pixel based optimization

$$
\chi^{2}\left(\mathbf{d}_{i}\right)=\sum_{k}\left[\tilde{X}^{(k)}\left(\mathbf{n}_{i}+\mathbf{d}_{i}\right)-X^{(k)}\left(\mathbf{n}_{i}\right)\right]^{2}
$$

Simple idea: We simulate the lensed pixel by adding lensing signal corresponding to this pixel, and compare it to the observed pixel. The difference then forces us to get the input lensing signal at this site.

Lensing simulated by convolution

$$
X^{(k)}\left(\mathbf{n}_{i}\right)=\tilde{X}^{(k)}\left(\mathbf{n}_{i}+\mathbf{d}_{i}\right)=\sum_{j=-\infty}^{+\infty} \tilde{X}^{(k)}\left(\mathbf{n}_{j}\right) r\left(\mathbf{n}_{i}+\mathbf{d}_{i}-\mathbf{n}_{j}\right)
$$

$r(n)$ is the cubic spline basis
S. K. Park, R. A. Schowngerdt. Computer Graphics Image Processing, 23(1983), 258

Minimization strategy I: Searching in 2 dimensions

$$
\left(n_{x}+d_{x}, n_{y}+d_{y}\right)
$$

$O\left(10^{0} s\right)$ per pixel on the sky

Minimization strategy II: Searching in 1 dimension

$$
\left(n_{x}+\frac{|d|}{\sqrt{2}}, n_{y}+\frac{|d|}{\sqrt{2}}\right)
$$

$\mathrm{O}\left(10^{-1} \mathrm{~s}\right)$ per pixel on the sky

It is 10 times faster than Strategy I with the same results.

Results

No noise for now

$$
\Delta_{T}=0 \mu \mathrm{~K} \cdot \operatorname{arcmin}, \Delta_{P}=0 \mu \mathrm{~K} \cdot \operatorname{arcmin}
$$

Power spectra no noise

Changes made by neutrino masses

Sensitivity to primordial power spectra for H \& O

Log scale

CAMB default WMAP 7

case	P_{1}	P_{2}	percent change
$\Omega_{b} h^{2}$	0.0226	0.0258	14.2%
$\Omega_{c} h^{2}$	0.112	0.1109	0.98%
H_{0}	70	71	1.43%
n_{s}	0.96	0.963	0.31%
A_{s}	2.1×10^{-9}	2.43×10^{-9}	15.7%
τ	0.09	0.088	2.22%

Sensitivity to primordial power spectra for H \& O

Future plans
-Add instrumental noise to χ^{2} method
-Study sensitivity to knowledge of $\tilde{X}(n)$
-Compare Hu \& Okamoto method to χ^{2} method
-Forecast for upcoming experiments (Planck, CMBPol, Polarbear, ACTPol, SPTPol)

Conclusion

De-lensing involves lensed and primordial power spectra

Extraction of deflection and primordial B mode power spectra will be a challenge

We are probably reaching the point where theoretical systematic effects will become significant

Thank you!

