

Which redshifts contribute most?

The deflection field receives contribution from a wide range of redshifts: 0.5<z<5.

Which scales contribute the most?

Most contribution comes from linear and quasilinear scales in the matter power spectrum.

Clearly see lensing in smearing now

First Internal Measurements are coming in...

First Applications Lambda from CMB alone

Astrophysical Foregrounds

Stephen

Galactic Foregrounds

Complications

- ✓ Galaxy
 - Component separation will help but residuals expected
 - Masking large regions of the sky is necessary
- ✓ How to handle galactic mask ?
 - Analytically ?
 - Inverse covariance weighting is difficult
 - Planck resolution
 - Low noise, large dynamic
 - Inpainting technics hard to control
- ✓ We want a simple, robust and linear pipeline
 - Apodized galactic cut

Aurelien+Typhaine

POLARBEAR-I Expected Polarization Power Spectra

ACTPol E-mode Projection

SPTPol B-mode Projection

Kimmy

Neutrino mass constraint

Parameter space: $\Omega_b h^2, \Omega_{cdm} h^2, \Omega_v h^2, H, A_s, n_s, \tau, Y_{He}$

Tinier but exciting signals .. also E-\phi.

Massively Scalable Simulations

^		~
1		
	X	
-		-

Table 1.					
	Planck	$Planck+PolarBear_{1000}$	PolarBear ₁₆₀₀₀	Planck+PolarBear ₁₆₀₀₀	
$\Omega_b h^2$	0.000209	0.000178	$9.2 imes 10^{-5}$	$8.3 imes 10^{-5}$	
$\Omega_m h^2$	0.00231	0.00202	0.00144	0.00115	
n_s	0.00689	0.00596	0.00403	0.0032	
$\sum m_{\nu}$	0.121	0.099	0.0616	0.0502	
au	0.00438	0.00415	0.00343	0.00268	
Y_p	0.00997	0.00794	0.00397	0.00352	

Galaxy Bias

$\hat{\mathbf{d}} \times$ galaxies

Large Scale Structure (LSS) surveys measure autocorrelations of galaxies.

From this, we try to infer the correlations among dark matter halos.

Such inferences are limited by our lack of understanding of bias - or how luminous matter traces dark matter. If we cross-correlate the reconstructed deflection field with the galaxy number counts, we go one step closer to the truth by directly measuring the galaxy-dark matter correlation.

CMB lensing is particularly relevant for high z objects, behind which there are no galaxies to be lensed!

Galaxy Bias

 $\hat{\mathbf{d}} \times \text{galaxies}$

Great Signal-to-noise!

Galaxy	ñ	$A/10^{3}$	z_c	b	CMB Expt.	(S/N)	$\Delta b/b(\%)$
Survey							
					PLANCK	5.8	17.3
SDSSLRG	12.4	3.8	0.31	2	PACT	11.4	8.8
					IDEAL	20.4	4.9
					PLANCK	10.8	9.3
BOSS1	40.	10	0.3	2	PACT	25.5	3.9
					IDEAL	52.5	1.9
					PLANCK	17.0	5.9
BOSS2	110.	10	0.6	2	PACT	39.4	2.5
					IDEAL	78.2	1.3
					PLANCK	52.8	1.9
ADEPT	3500	27	1.35	1	PACT	107.5	0.9
					IDEAL	228.3	0.4

Acquavivia, Hajian, Spergel and Das, PRD 78, 043514 (2008)

GR Test From Galaxy Bias

$$\epsilon(k,a) = \Omega_m^{-\gamma(a)} rac{d \ln D}{d \ln a} - 1$$
 $\gamma(z) \simeq 0.557 - 0.02z$ is accurate at the 0.3% level

Herschel Galaxies

•The Herschel mission is mapping Far IR and sub-mm galaxies at 1 < z < 3.

 Steep number counts imply strong negative K-corrections and magnification bias.

 "Golden" candidates for cross-correlation with Planck lensing reconstruction. (Even for SPT and ACT)

• Cross-correlation signal can improve parameter constraints.

PolarBear-I

Das and de Putter (in prep)

Herschel Galaxies

•The Herschel mission is mapping Far IR and sub-mm galaxies at 1 < z < 3.

•Steep number counts imply strong negative K-corrections and magnification bias.

 "Golden" candidates for cross-correlation with Planck lensing reconstruction. (Even for SPT and ACT)

• Cross-correlation signal can improve parameter constraints.

SuperPolarBear

Das and de Putter (in prep)

Herschel Galaxies

•The Herschel mission is mapping Far IR and sub-mm galaxies at 1 < z < 3.

•Steep number counts imply strong negative K-corrections and magnification bias.

 "Golden" candidates for cross-correlation with Planck lensing reconstruction. (Even for SPT and ACT)

• Cross-correlation signal can improve parameter constraints.

Das and de Putter (in prep)

Alexie

BERKELEY CENTER for COSMOLOGICAL PHYSICS

SUDEEP DAS

MEASURING DISTANCES

$$r\equiv rac{C_\ell^{\kappa_{
m CMB}\Sigma}}{C_\ell^{\kappa_{
m gal}\Sigma}}~\simeq$$

$$rac{d_A(\eta_0-\eta_f)d_A(\eta_{
m gal})}{d_A(\eta_{
m gal}-\eta_f)d_A(\eta_0)}.$$

SUDEEP DAS

BERKELEY CENTER for

PHYSICS

COSMOLOGICAL

Das and Spergel (2008)

MEASURING DISTANCES

Experiment	Type	$(S/N)^{cross}$	$\Delta r/r(\%)$
Planck	POL	25.8	3.8
	TT	23.3	4.2
CMBPOL	POL	102.6	1.0
	TT	84.5	1.2

Planck: 7' FWHM $28(57)\mu K$ -arcmin in Temp (Pol) CMBPOL: 3' FWHM

 $1.0(1.4)\mu K$ -arcmin in Temp (Pol) $f_{sky} \sim 0.65$

ENTER for

SUDEEP DAS

Das and Spergel (2008)

MEASURING DISTANCES

SUDEEP DAS

EY CENTER for

Das and Spergel (2008)

MEASURING GROWTH

Cross-correlating CMB lensing with cosmic shear in redshift slices will probe growth of structure directly!

Deviations from GR?

Das, de Putter, et al in prep

SUDEEP DAS

Ly-alpha Forest And CMB $\hat{\mathbf{d}} \times \mathbf{Ly} - \alpha$ Lensing

The Ly-alpha absorption features in quasar spectra probe small scale density fluctuations.

Lensing probes the long wavelength modes.

Cross-correlation is a potentially powerful cosmological tool ! Relevant for the BOSS survey: 200,000 QSOs.

Vallinotto, Das, Spergel & Viel, PRL,103:091304, 2009

Alberto

Results: detectability (BOSS+ActPol)

- S/N for single line-of-sight. $1.6 \cdot 10^5$ los for Boss, ~ 10^6 los for BigBoss.
- Estimates for total S/N are ~50 (130) for (δFκ) and ~20 (50) for (δF²κ) when ActPol dataset is xcorrelated with Boss (BigBoss).
- S/N does not depend on the redshift evolution of A and β.

Lots To Do ...

Lots Of Papers To Write ...

Lets Discuss Some Questions Now ...