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Which redshifts contribute most? 
Some text

3

z >1

z > 5
z <1  

 z <5

The deflection field receives contribution from a 
wide range of redshifts: 0.5<z<5.
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Which scales contribute the most?

4

Most contribution comes from linear and quasi-
linear scales in the matter power spectrum.

Matter Power spectrum
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Ryan

Clearly see lensing in smearing now
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First  Internal Measurements are coming in... 

Joe 

Blake

Alex
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Blake

First Applications .... Lambda from 
CMB alone 
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Astrophysical Foregrounds

Stephen 
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Aurelien+Typhaine

Galactic Foregrounds
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Duncan

Tinier but exciting signals  ..
also E-\phi.
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Massively Scalable Simulations

Guilio 
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Large Scale Structure (LSS) 
surveys measure autocorrelations 
of galaxies. 

From this, we try to infer the 
correlations among dark matter 
halos. 

Such inferences  are limited by 
our  lack of understanding  of 
bias - or how luminous matter 
traces dark matter.

Galaxy Bias

If we cross-correlate the 
reconstructed deflection field 
with the galaxy number counts, 
we go one step closer to the 
truth by directly measuring the 
galaxy-dark matter correlation.

CMB lensing is particularly 
relevant for high z objects, 
behind which there are no 
galaxies to be lensed!

d̂ × galaxies
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Galaxy Bias
Great Signal-to-noise!

Acquavivia, Hajian, Spergel and Das, 
PRD 78, 043514 (2008)

d̂ × galaxies
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GR Test From Galaxy Bias

Acquavivia, Hajian, Spergel and Das, 
PRD 78, 043514 (2008)
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Herschel Galaxies
•The Herschel mission is 
mapping Far IR and sub-mm 
galaxies at 1< z < 3. 

•Steep number counts imply 
strong negative K-corrections 
and magnification bias. 

•“Golden” candidates for 
cross-correlation with Planck 
lensing reconstruction. (Even 
for SPT and ACT)

• Cross-correlation signal can 
improve parameter constraints.

Das and de Putter (in prep) 

Cκκ
�

Cgκ
�

PolarBear-I
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Herschel Galaxies
•The Herschel mission is 
mapping Far IR and sub-mm 
galaxies at 1< z < 3. 

•Steep number counts imply 
strong negative K-corrections 
and magnification bias. 

•“Golden” candidates for 
cross-correlation with Planck 
lensing reconstruction. (Even 
for SPT and ACT)

• Cross-correlation signal can 
improve parameter constraints.

Das and de Putter (in prep) 

SuperPolarBear

Cκκ
�

Cgκ
�
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Herschel Galaxies
•The Herschel mission is 
mapping Far IR and sub-mm 
galaxies at 1< z < 3. 

•Steep number counts imply 
strong negative K-corrections 
and magnification bias. 

•“Golden” candidates for 
cross-correlation with Planck 
lensing reconstruction. (Even 
for SPT and ACT)

• Cross-correlation signal can 
improve parameter constraints.

Das and de Putter (in prep) 

PB2 only

+ PB2 X Herschel 
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SUDEEP DAS

Alexie 
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SUDEEP DAS

Measuring distances

�

Das and Spergel (2008)

Should be doable on Stripe-82 (CFHTLS); 
also with Subaru HSC/ LSST 
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SUDEEP DAS

Measuring distances

Das and Spergel (2008)
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FIG. 1: Cross power spectra, the ratio of which is being stud-
ied (cf. equation 8). Also shown are predicted 1σ errors in
uniform bins of size ∆" = 30. For the CΣκCMB

"
case, the

outer (lighter) errors correspond to lensing reconstruction us-
ing temperature and polarization with Planck, while the inner
(darker) ones correspond to the same for CMBPOL.

In Fig. 1, we display the two cross power spectra ap-
pearing in the defining equation (8) of the lensing ratio
along with binned uncertainties predicted from the ex-
perimental specifications.

The error on the ratio can be obtained as follows. We
begin by defining the log-likelihood,

χ2(r) =
∑

!

Z2
!

σ2(Z!)
(10)

where, Z! = CκCMBΣ
! − rC

κgalΣ
! . We compute the vari-

ance of Zl at the value r0 of r computed in the fiducial
cosmology,

σ2(Z!) =
1

(2# + 1)fsky

[

C̃κCMBκCMB

! C̃ΣΣ
! + (CκCMBΣ

! )2

+ r2
o

(

C̃
κgalκgal

! C̃ΣΣ
! + (C

κgalΣ
! )2

)

−2r0

(

C
κCMBκgal

! C̃ΣΣ
! + CκCMBΣ

! C
κgalΣ
!

)]

(11)

where,

C̃XX
! = CXX

! + NXX
!

include the noise power spectra. The Poisson noise for
the foreground tracer is taken as NΣΣ

! = 1/n̄f . Then
maximum likelihood estimate for the ratio is then ob-
tained by solving ∂χ2(r)/∂r = 0 to be,

r̂ =

∑

! CκCMBΣ
! C

κgalΣ
! /σ2(Z!)

∑

!(C
κgalΣ
! )2/σ2(Z!)

(12)

Now, we can estimate the error on r as,

1

σ2(r̂)
=

1

2

∂2χ2(r)

∂r2
=

∑

!

(C
κgalΣ
! )2

σ2(Z!)
. (13)

Various auto, cross and noise power spectra that enter
the calculation of the error on r are shown in Fig. 2.
The above figures borne out the expected feature that
the noise power spectrum in the lensing reconstruction
is the largest source of uncertainty that propagates into
the error on r.

FIG. 2: Various power spectra that enter the calculation of
the error on the lensing ratio (cf. eq. 13). Each of the noise
power spectra has been plotted with the same line style as its
corresponding signal power spectrum and labeled as N". The
noise spectrum for the CMB lensing reconstruction has been
indicated both for Planck and CMBPOL.

The estimated errors on r are shown in Table I. For
Planck, we find that the lensing-ratio can be estimated
to ∼ 4% while with CMBPOL a ∼ 1% measurement is
possible.

IV. PARAMETER CONSTRAINTS

For Planck priors, improvements on cosmological pa-
rameter constraints upon adding the lensing-ratio to the
primary CMB observables become appreciable when the
error on the ratio decreases below 10% [3]. It is inter-
esting to note here that the method for estimating the
lensing-ratio proposed by [3], which relies on cluster mass
reconstruction can be further improved with the maxi-
mum likelihood based estimator proposed by [8] and can
complement the method proposed here. By combining
the two methods for the same redshift slices, it may be

4

FIG. 3: Left Panel : Improvements of constrains in the Ωk −ΩΛ plane for a vacuum energy model with Planck by adding a 1%
measurement of the lensing-ratio. The outer solid contour is the 68% confidence interval from primary CMB alone while the
inner solid contour is the same after adding the lensing-ratio. The dotted contours have the same interpretation but represent
the case where information from lensing extraction has been added to the CMB Fisher matrix. Right Panel: Same as left, but
for the w − ΩΛ plane, assuming flatness.

Experiment Type (S/N)cross ∆r/r(%)

Planck POL 25.8 3.8

TT 23.3 4.2

CMBPOL POL 102.6 1.0

TT 84.5 1.2

TABLE I: Predictions for the cross-correlation studies de-
scribed in the text with foreground galaxies from ADEPT,
background galaxies from LSST and different CMB experi-
ments. The quantity (S/N)cross represents the signal-to-noise
ratio in the estimation of the cross correlation between the
foreground tracer density with CMB lensing. The last col-
umn shows percentage error in the lensing-ratio estimator, r
of equation (8). We show the prediction for both temperature
based (TT) and polarization based (POL) reconstruction of
the deflection field from the lensed CMB.

possible to reduce the uncertainty in the lensing-ratio to
percent or sub-percent levels.

In order to assess how a percent-level measurement of
the ratio will help constrain a set of cosmological param-
eters {pi} in conjunction with the CMB experiments, we
define a Fisher matrix for the lensing-ratio,

F r
ij =

∂ln r

∂pi

1

σ2(ln r)

∂ ln r

∂pj
. (14)

and add it to the Fisher matrix from a CMB experiment.
The error in a parameter is then estimated from the in-
verse of the combined Fisher matrix as σ(pi) =

√

[F−1]ii.
We consider two variants of the CMB Fisher Matrix, one
with only the primordial power spectra and the other

with the power spectra involving the weak lensing de-
flection field extracted from CMB lensing measurements
[9, 10]. We do not consider any foreground contamina-
tion in any of these. Fig. 3 shows the constraints pre-
dicted with Planck specifications and a 1% error on the
lensing-ratio, for minimal extensions to the standard 6-
parameter model. These constrains are marginalized over
all other parameters. The constraints on curvature as-
suming w = −1 and on w assuming flatness, both im-
prove over the primary CMB case after adding in the ra-
tio. For CMB with lensing extraction the improvement
on w is still substantial while that on Ωk is marginal.

Following [9], we also consider a more general 11-
parameter model with w, fraction of dark matter in
massive neutrinos fν , the effective number of neutrino
species, the running of the spectral index and the pri-
mordial Helium fraction. We adopt a fiducial value of 0.1
eV for the total neutrino mass. The constraints on the
interesting subspace of parameters are shown in Fig. 4.
We find in this case that adding in the ratio significantly
improves the constraints on w and fν over the primary
CMB case. In fact, for w and ΩΛ the improvements sur-
pass those from the lensed CMB Fisher matrix. This
is particularly interesting because the lensed-CMB-only
constraints require an estimate of the convergence field
from the four point function in the lensed CMB itself and
is more prone to systematics than the cross-correlations
that enter the ratio calculation. From Fig. 4, it is ap-
parent that for the CMB Fisher matrix with lensing ex-
traction the constraint on the neutrino mass is rather
tight, so that no further gain is obtained by adding in

2

We also consider a suitable foreground population as a
tracer of large-scale structure. The projected fractional
overdensity of the tracers can be written as,

Σ(n̂) =

∫

dηWf (η)δg(ηn̂, η), (4)

where δg represents the fractional tracer overdensity and
Wf is the normalized tracer distribution function in co-
moving distance. We assume that the Fourier modes of
the tracer overdensity field are related to those of the
underlying matter density field via a scale and redshift
dependent bias factor, so that δg(k, η) = b(k, η)δ(k, η).
If we cross-correlate the tracer overdensity map with the
convergence field, we obtain the cross power spectrum,

CκΣ
" =

3

2
ΩmH2

0

∫

dηb"(η)Wf (η)
g(η)

a(η)
P (

#

dA
, η), (5)

where we have used the Limber approximation and the
orthogonality of spherical harmonics. We have also in-
troduced the shorthand notation, b"(η) ≡ b( "

dA
, η).

Now, we will introduce two separate cross-correlation
measures involving the foreground tracer population.
First, we consider the case for the CMB as the back-
ground source. By constructing estimators out of
quadratic combinations of CMB fields (temperature and
polarization), it possible to obtain a noisy reconstruction
of the convergence field (note that the actual observable
in this case is the deflection field) out to the last scatter-
ing surface [5, 6], which we denote as κCMB. The power
spectrum of the noise in the reconstruction, NκCMBκCMB

" ,
can be estimated knowing the specifications for the CMB
experiment. The cross-correlation of the reconstructed
convergence field from the lensed CMB with the fore-
ground tracer, gives the signal,

CκCMBΣ
" =

3

2
ΩmH2

0

∫

dηb"(η)Wf (η)
gCMB(η)

a(η)
P (

#

dA
, η),

(6)
where we have used the source distribution kernel gCMB

appropriate for the CMB being the background source.
Next, we consider the case for the weak lensing of back-

ground galaxies. The relevant observable in this case is
the traceless symmetric shear field on the sky, the mea-
surement of which allows a noisy reconstruction of the
convergence field appropriate to the background galaxy
distribution, κgal. In this case, the noise is primarily due
to intrinsic ellipticity of the background galaxies and has

the spectrum, N
κgalκgal

l =
〈

γ2
int

〉

/n̄ where
〈

γ2
int

〉1/2
∼ 0.3

and n̄ is the number of background galaxies per steradian
[7]. If we cross correlate this convergence field with the
foreground tracers, we find the signal,

C
κgalΣ
" =

3

2
ΩmH2

0

∫

dηb"(η)Wf (η)
ggal(η)

a(η)
P (

#

dA
, η),

(7)
where we have used the source distribution kernel, ggal

appropriate for background galaxies.

If the foreground distribution is narrow in redshift so
that it can be approximated by a delta function, Wf (η) #
δ(η−ηf ), then the ratio of the above two cross-correlation
measures, which we call the lensing-ratio, reduces to,

r ≡
CκCMBΣ

"

C
κgalΣ
"

=
gCMB(ηf )

ggal(ηf )
(8)

which is simply the geometrical ratio of the source dis-
tribution kernels. If the background galaxy distribution,
too, is sufficiently narrow in redshift around z = zgal,
this becomes,

r =
dA(η0 − ηf )dA(ηgal)

dA(ηgal − ηf )dA(η0)
. (9)

Note that this is independent of the angular scale, tracer
bias and the power spectrum. Therefore, measurements
at several multipoles can be combined to constrain the
lensing-ratio. Since the distance ratios depend on the
cosmology and specifically on the dark energy model, this
can be used to constrain dark energy parameters.

III. UPCOMING SURVEYS AND A NEW

PROBE OF DARK ENERGY AND CURVATURE

Large scale structure surveys, together with precision
measurements of the CMB anisotropies have already pro-
vided us with a wealth of knowledge about the geometry,
evolution and composition of the Universe. In the com-
ing decade, Cosmologists will carry out even larger scale
galaxy and lensing surveys and produce higher resolution
CMB maps. We consider a combination of three exper-
iments in order to assess how well the lensing-ratio can
be measured in such future surveys. We consider the
redshift slice of foreground tracers (lenses) to be drawn
from an ADEPT-like [17] large scale structure survey and
the background (source) galaxies taken from an LSST-
like [18] weak lensing experiment. For the CMB lensing
measurements, we consider the upcoming Planck mission
as well as a prospective polarization-based mission like
CMBPOL.

The foreground galaxy slice is taken as a step func-
tion in the redshift range (0.8, 0.9) with 350 galaxies per
square degree. The source galaxies are also assumed to
be distributed uniformly in redshift, between z = 1.2 and
1.6 with a number density of 40 galaxies per square ar-
cmin. We model Planck to be a 7′ FWHM instrument
with temperature and polarization sensitivities of 28 and
57 µK-arcmin, respectively. For CMBPOL, we adopt a
3′ beam FWHM and temperature and polarization sensi-
tivities of 1 and 1.4 µK-arcmin, respectively. We assume
that both CMB experiments cover 65% of the sky and
all cross-correlations are performed over the same area.
For calculations performed here we assumed a WMAP 5-
year normalized ΛCDM cosmology with Ωbh2 = 0.0227,
ΩCDMh2 = 0.1099, ΩΛ = 0.742, τ = 0.087, ns = 0.963
and As = 2.41 × 10−9.
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We also consider a suitable foreground population as a
tracer of large-scale structure. The projected fractional
overdensity of the tracers can be written as,

Σ(n̂) =

∫

dηWf (η)δg(ηn̂, η), (4)

where δg represents the fractional tracer overdensity and
Wf is the normalized tracer distribution function in co-
moving distance. We assume that the Fourier modes of
the tracer overdensity field are related to those of the
underlying matter density field via a scale and redshift
dependent bias factor, so that δg(k, η) = b(k, η)δ(k, η).
If we cross-correlate the tracer overdensity map with the
convergence field, we obtain the cross power spectrum,
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where we have used the Limber approximation and the
orthogonality of spherical harmonics. We have also in-
troduced the shorthand notation, b"(η) ≡ b( "

dA
, η).

Now, we will introduce two separate cross-correlation
measures involving the foreground tracer population.
First, we consider the case for the CMB as the back-
ground source. By constructing estimators out of
quadratic combinations of CMB fields (temperature and
polarization), it possible to obtain a noisy reconstruction
of the convergence field (note that the actual observable
in this case is the deflection field) out to the last scatter-
ing surface [5, 6], which we denote as κCMB. The power
spectrum of the noise in the reconstruction, NκCMBκCMB

" ,
can be estimated knowing the specifications for the CMB
experiment. The cross-correlation of the reconstructed
convergence field from the lensed CMB with the fore-
ground tracer, gives the signal,
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where we have used the source distribution kernel gCMB

appropriate for the CMB being the background source.
Next, we consider the case for the weak lensing of back-

ground galaxies. The relevant observable in this case is
the traceless symmetric shear field on the sky, the mea-
surement of which allows a noisy reconstruction of the
convergence field appropriate to the background galaxy
distribution, κgal. In this case, the noise is primarily due
to intrinsic ellipticity of the background galaxies and has

the spectrum, N
κgalκgal

l =
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/n̄ where
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and n̄ is the number of background galaxies per steradian
[7]. If we cross correlate this convergence field with the
foreground tracers, we find the signal,
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where we have used the source distribution kernel, ggal

appropriate for background galaxies.

If the foreground distribution is narrow in redshift so
that it can be approximated by a delta function, Wf (η) #
δ(η−ηf ), then the ratio of the above two cross-correlation
measures, which we call the lensing-ratio, reduces to,

r ≡
CκCMBΣ

"

C
κgalΣ
"

=
gCMB(ηf )

ggal(ηf )
(8)

which is simply the geometrical ratio of the source dis-
tribution kernels. If the background galaxy distribution,
too, is sufficiently narrow in redshift around z = zgal,
this becomes,

r =
dA(η0 − ηf )dA(ηgal)

dA(ηgal − ηf )dA(η0)
. (9)

Note that this is independent of the angular scale, tracer
bias and the power spectrum. Therefore, measurements
at several multipoles can be combined to constrain the
lensing-ratio. Since the distance ratios depend on the
cosmology and specifically on the dark energy model, this
can be used to constrain dark energy parameters.

III. UPCOMING SURVEYS AND A NEW

PROBE OF DARK ENERGY AND CURVATURE

Large scale structure surveys, together with precision
measurements of the CMB anisotropies have already pro-
vided us with a wealth of knowledge about the geometry,
evolution and composition of the Universe. In the com-
ing decade, Cosmologists will carry out even larger scale
galaxy and lensing surveys and produce higher resolution
CMB maps. We consider a combination of three exper-
iments in order to assess how well the lensing-ratio can
be measured in such future surveys. We consider the
redshift slice of foreground tracers (lenses) to be drawn
from an ADEPT-like [17] large scale structure survey and
the background (source) galaxies taken from an LSST-
like [18] weak lensing experiment. For the CMB lensing
measurements, we consider the upcoming Planck mission
as well as a prospective polarization-based mission like
CMBPOL.

The foreground galaxy slice is taken as a step func-
tion in the redshift range (0.8, 0.9) with 350 galaxies per
square degree. The source galaxies are also assumed to
be distributed uniformly in redshift, between z = 1.2 and
1.6 with a number density of 40 galaxies per square ar-
cmin. We model Planck to be a 7′ FWHM instrument
with temperature and polarization sensitivities of 28 and
57 µK-arcmin, respectively. For CMBPOL, we adopt a
3′ beam FWHM and temperature and polarization sensi-
tivities of 1 and 1.4 µK-arcmin, respectively. We assume
that both CMB experiments cover 65% of the sky and
all cross-correlations are performed over the same area.
For calculations performed here we assumed a WMAP 5-
year normalized ΛCDM cosmology with Ωbh2 = 0.0227,
ΩCDMh2 = 0.1099, ΩΛ = 0.742, τ = 0.087, ns = 0.963
and As = 2.41 × 10−9.

!

C
!

Planck: 7′ FWHM

28(57)µK -arcmin in Temp (Pol)

CMBPOL: 3′ FWHM

1.0(1.4)µK-arcmin in Temp (Pol)

fsky ∼ 0.65
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FIG. 1: Cross power spectra, the ratio of which is being stud-
ied (cf. equation 8). Also shown are predicted 1σ errors in
uniform bins of size ∆" = 30. For the CΣκCMB

"
case, the

outer (lighter) errors correspond to lensing reconstruction us-
ing temperature and polarization with Planck, while the inner
(darker) ones correspond to the same for CMBPOL.

In Fig. 1, we display the two cross power spectra ap-
pearing in the defining equation (8) of the lensing ratio
along with binned uncertainties predicted from the ex-
perimental specifications.

The error on the ratio can be obtained as follows. We
begin by defining the log-likelihood,

χ2(r) =
∑

!

Z2
!

σ2(Z!)
(10)

where, Z! = CκCMBΣ
! − rC

κgalΣ
! . We compute the vari-

ance of Zl at the value r0 of r computed in the fiducial
cosmology,

σ2(Z!) =
1

(2# + 1)fsky
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(11)

where,

C̃XX
! = CXX

! + NXX
!

include the noise power spectra. The Poisson noise for
the foreground tracer is taken as NΣΣ

! = 1/n̄f . Then
maximum likelihood estimate for the ratio is then ob-
tained by solving ∂χ2(r)/∂r = 0 to be,

r̂ =

∑

! CκCMBΣ
! C

κgalΣ
! /σ2(Z!)

∑

!(C
κgalΣ
! )2/σ2(Z!)

(12)

Now, we can estimate the error on r as,

1

σ2(r̂)
=

1

2

∂2χ2(r)

∂r2
=

∑

!

(C
κgalΣ
! )2

σ2(Z!)
. (13)

Various auto, cross and noise power spectra that enter
the calculation of the error on r are shown in Fig. 2.
The above figures borne out the expected feature that
the noise power spectrum in the lensing reconstruction
is the largest source of uncertainty that propagates into
the error on r.

FIG. 2: Various power spectra that enter the calculation of
the error on the lensing ratio (cf. eq. 13). Each of the noise
power spectra has been plotted with the same line style as its
corresponding signal power spectrum and labeled as N". The
noise spectrum for the CMB lensing reconstruction has been
indicated both for Planck and CMBPOL.

The estimated errors on r are shown in Table I. For
Planck, we find that the lensing-ratio can be estimated
to ∼ 4% while with CMBPOL a ∼ 1% measurement is
possible.

IV. PARAMETER CONSTRAINTS

For Planck priors, improvements on cosmological pa-
rameter constraints upon adding the lensing-ratio to the
primary CMB observables become appreciable when the
error on the ratio decreases below 10% [3]. It is inter-
esting to note here that the method for estimating the
lensing-ratio proposed by [3], which relies on cluster mass
reconstruction can be further improved with the maxi-
mum likelihood based estimator proposed by [8] and can
complement the method proposed here. By combining
the two methods for the same redshift slices, it may be

4

FIG. 3: Left Panel : Improvements of constrains in the Ωk −ΩΛ plane for a vacuum energy model with Planck by adding a 1%
measurement of the lensing-ratio. The outer solid contour is the 68% confidence interval from primary CMB alone while the
inner solid contour is the same after adding the lensing-ratio. The dotted contours have the same interpretation but represent
the case where information from lensing extraction has been added to the CMB Fisher matrix. Right Panel: Same as left, but
for the w − ΩΛ plane, assuming flatness.

Experiment Type (S/N)cross ∆r/r(%)

Planck POL 25.8 3.8

TT 23.3 4.2

CMBPOL POL 102.6 1.0

TT 84.5 1.2

TABLE I: Predictions for the cross-correlation studies de-
scribed in the text with foreground galaxies from ADEPT,
background galaxies from LSST and different CMB experi-
ments. The quantity (S/N)cross represents the signal-to-noise
ratio in the estimation of the cross correlation between the
foreground tracer density with CMB lensing. The last col-
umn shows percentage error in the lensing-ratio estimator, r
of equation (8). We show the prediction for both temperature
based (TT) and polarization based (POL) reconstruction of
the deflection field from the lensed CMB.

possible to reduce the uncertainty in the lensing-ratio to
percent or sub-percent levels.

In order to assess how a percent-level measurement of
the ratio will help constrain a set of cosmological param-
eters {pi} in conjunction with the CMB experiments, we
define a Fisher matrix for the lensing-ratio,

F r
ij =

∂ln r

∂pi

1

σ2(ln r)

∂ ln r

∂pj
. (14)

and add it to the Fisher matrix from a CMB experiment.
The error in a parameter is then estimated from the in-
verse of the combined Fisher matrix as σ(pi) =

√

[F−1]ii.
We consider two variants of the CMB Fisher Matrix, one
with only the primordial power spectra and the other

with the power spectra involving the weak lensing de-
flection field extracted from CMB lensing measurements
[9, 10]. We do not consider any foreground contamina-
tion in any of these. Fig. 3 shows the constraints pre-
dicted with Planck specifications and a 1% error on the
lensing-ratio, for minimal extensions to the standard 6-
parameter model. These constrains are marginalized over
all other parameters. The constraints on curvature as-
suming w = −1 and on w assuming flatness, both im-
prove over the primary CMB case after adding in the ra-
tio. For CMB with lensing extraction the improvement
on w is still substantial while that on Ωk is marginal.

Following [9], we also consider a more general 11-
parameter model with w, fraction of dark matter in
massive neutrinos fν , the effective number of neutrino
species, the running of the spectral index and the pri-
mordial Helium fraction. We adopt a fiducial value of 0.1
eV for the total neutrino mass. The constraints on the
interesting subspace of parameters are shown in Fig. 4.
We find in this case that adding in the ratio significantly
improves the constraints on w and fν over the primary
CMB case. In fact, for w and ΩΛ the improvements sur-
pass those from the lensed CMB Fisher matrix. This
is particularly interesting because the lensed-CMB-only
constraints require an estimate of the convergence field
from the four point function in the lensed CMB itself and
is more prone to systematics than the cross-correlations
that enter the ratio calculation. From Fig. 4, it is ap-
parent that for the CMB Fisher matrix with lensing ex-
traction the constraint on the neutrino mass is rather
tight, so that no further gain is obtained by adding in
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We also consider a suitable foreground population as a
tracer of large-scale structure. The projected fractional
overdensity of the tracers can be written as,

Σ(n̂) =

∫

dηWf (η)δg(ηn̂, η), (4)

where δg represents the fractional tracer overdensity and
Wf is the normalized tracer distribution function in co-
moving distance. We assume that the Fourier modes of
the tracer overdensity field are related to those of the
underlying matter density field via a scale and redshift
dependent bias factor, so that δg(k, η) = b(k, η)δ(k, η).
If we cross-correlate the tracer overdensity map with the
convergence field, we obtain the cross power spectrum,
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where we have used the Limber approximation and the
orthogonality of spherical harmonics. We have also in-
troduced the shorthand notation, b"(η) ≡ b( "

dA
, η).

Now, we will introduce two separate cross-correlation
measures involving the foreground tracer population.
First, we consider the case for the CMB as the back-
ground source. By constructing estimators out of
quadratic combinations of CMB fields (temperature and
polarization), it possible to obtain a noisy reconstruction
of the convergence field (note that the actual observable
in this case is the deflection field) out to the last scatter-
ing surface [5, 6], which we denote as κCMB. The power
spectrum of the noise in the reconstruction, NκCMBκCMB

" ,
can be estimated knowing the specifications for the CMB
experiment. The cross-correlation of the reconstructed
convergence field from the lensed CMB with the fore-
ground tracer, gives the signal,
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where we have used the source distribution kernel gCMB

appropriate for the CMB being the background source.
Next, we consider the case for the weak lensing of back-

ground galaxies. The relevant observable in this case is
the traceless symmetric shear field on the sky, the mea-
surement of which allows a noisy reconstruction of the
convergence field appropriate to the background galaxy
distribution, κgal. In this case, the noise is primarily due
to intrinsic ellipticity of the background galaxies and has

the spectrum, N
κgalκgal

l =
〈

γ2
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/n̄ where
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∼ 0.3

and n̄ is the number of background galaxies per steradian
[7]. If we cross correlate this convergence field with the
foreground tracers, we find the signal,
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where we have used the source distribution kernel, ggal

appropriate for background galaxies.

If the foreground distribution is narrow in redshift so
that it can be approximated by a delta function, Wf (η) #
δ(η−ηf ), then the ratio of the above two cross-correlation
measures, which we call the lensing-ratio, reduces to,

r ≡
CκCMBΣ

"

C
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"

=
gCMB(ηf )

ggal(ηf )
(8)

which is simply the geometrical ratio of the source dis-
tribution kernels. If the background galaxy distribution,
too, is sufficiently narrow in redshift around z = zgal,
this becomes,

r =
dA(η0 − ηf )dA(ηgal)

dA(ηgal − ηf )dA(η0)
. (9)

Note that this is independent of the angular scale, tracer
bias and the power spectrum. Therefore, measurements
at several multipoles can be combined to constrain the
lensing-ratio. Since the distance ratios depend on the
cosmology and specifically on the dark energy model, this
can be used to constrain dark energy parameters.

III. UPCOMING SURVEYS AND A NEW

PROBE OF DARK ENERGY AND CURVATURE

Large scale structure surveys, together with precision
measurements of the CMB anisotropies have already pro-
vided us with a wealth of knowledge about the geometry,
evolution and composition of the Universe. In the com-
ing decade, Cosmologists will carry out even larger scale
galaxy and lensing surveys and produce higher resolution
CMB maps. We consider a combination of three exper-
iments in order to assess how well the lensing-ratio can
be measured in such future surveys. We consider the
redshift slice of foreground tracers (lenses) to be drawn
from an ADEPT-like [17] large scale structure survey and
the background (source) galaxies taken from an LSST-
like [18] weak lensing experiment. For the CMB lensing
measurements, we consider the upcoming Planck mission
as well as a prospective polarization-based mission like
CMBPOL.

The foreground galaxy slice is taken as a step func-
tion in the redshift range (0.8, 0.9) with 350 galaxies per
square degree. The source galaxies are also assumed to
be distributed uniformly in redshift, between z = 1.2 and
1.6 with a number density of 40 galaxies per square ar-
cmin. We model Planck to be a 7′ FWHM instrument
with temperature and polarization sensitivities of 28 and
57 µK-arcmin, respectively. For CMBPOL, we adopt a
3′ beam FWHM and temperature and polarization sensi-
tivities of 1 and 1.4 µK-arcmin, respectively. We assume
that both CMB experiments cover 65% of the sky and
all cross-correlations are performed over the same area.
For calculations performed here we assumed a WMAP 5-
year normalized ΛCDM cosmology with Ωbh2 = 0.0227,
ΩCDMh2 = 0.1099, ΩΛ = 0.742, τ = 0.087, ns = 0.963
and As = 2.41 × 10−9.
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that it can be approximated by a delta function, Wf (η) #
δ(η−ηf ), then the ratio of the above two cross-correlation
measures, which we call the lensing-ratio, reduces to,

r ≡
CκCMBΣ

"

C
κgalΣ
"

=
gCMB(ηf )

ggal(ηf )
(8)

which is simply the geometrical ratio of the source dis-
tribution kernels. If the background galaxy distribution,
too, is sufficiently narrow in redshift around z = zgal,
this becomes,

r =
dA(η0 − ηf )dA(ηgal)

dA(ηgal − ηf )dA(η0)
. (9)
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can be used to constrain dark energy parameters.
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vided us with a wealth of knowledge about the geometry,
evolution and composition of the Universe. In the com-
ing decade, Cosmologists will carry out even larger scale
galaxy and lensing surveys and produce higher resolution
CMB maps. We consider a combination of three exper-
iments in order to assess how well the lensing-ratio can
be measured in such future surveys. We consider the
redshift slice of foreground tracers (lenses) to be drawn
from an ADEPT-like [17] large scale structure survey and
the background (source) galaxies taken from an LSST-
like [18] weak lensing experiment. For the CMB lensing
measurements, we consider the upcoming Planck mission
as well as a prospective polarization-based mission like
CMBPOL.

The foreground galaxy slice is taken as a step func-
tion in the redshift range (0.8, 0.9) with 350 galaxies per
square degree. The source galaxies are also assumed to
be distributed uniformly in redshift, between z = 1.2 and
1.6 with a number density of 40 galaxies per square ar-
cmin. We model Planck to be a 7′ FWHM instrument
with temperature and polarization sensitivities of 28 and
57 µK-arcmin, respectively. For CMBPOL, we adopt a
3′ beam FWHM and temperature and polarization sensi-
tivities of 1 and 1.4 µK-arcmin, respectively. We assume
that both CMB experiments cover 65% of the sky and
all cross-correlations are performed over the same area.
For calculations performed here we assumed a WMAP 5-
year normalized ΛCDM cosmology with Ωbh2 = 0.0227,
ΩCDMh2 = 0.1099, ΩΛ = 0.742, τ = 0.087, ns = 0.963
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The Ly-alpha absorption 
features in quasar spectra 
probe small scale density 
fluctuations.

Lensing probes the long 
wavelength modes.

Cross-correlation is a 
potentially powerful 
cosmological tool ! Relevant 
for the BOSS survey: 
200,000 QSOs.

S/N ~ 10 for PLANCK

Ly-alpha Forest And CMB 
Lensing

Vallinotto, Das, Spergel &  Viel,
PRL,103:091304, 2009 

d̂ × Ly − α
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